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Outline

• Laser-Induced Single-Event Effects (SEEs)
• The Two-Photon Absorption (TPA)              

SEE Experiment
• 3-D Mapping of Single-Event Transients (SETs) 

in the LM124

• Backside “Through-Wafer” Carrier Injection

• Conclusions
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Pulsed Picosecond Laser

• Indispensable tool for SEE characterization
• Above-band gap pulsed laser can inject:

• a well-characterized quantity of charge
• in a well-defined location
• at a well-defined time
• with a well-defined charge-deposition profile
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Two-Photon Absorption SEE Experiment

• Because the laser pulse 
wavelength is sub-bandgap the 
material is transparent to the 
optical pulse

• Carriers are generated by 
nonlinear absorption at high pulse 
irradiances by the simultaneous 
absorption of two photons

• Carriers are highly concentrated in 
the high irradiance region near the 
focus of the beam

• Because of the lack of exponential 
attenuation, carriers can be 
injected at any depth in the 
semiconductor material

• This permits 3-D mapping and 
backside illumination
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Two-Photon Absorption SEE Experiment

COMPLEMENTARY TECHINQUE

• Not intended to replace “conventional” 
(above band gap) pulsed laser

• Not intended to replace heavy-ion irradiation

• WILL NOT replace these tools

• Is another “Tool” in our “SEE Toolbox”
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Two-Photon Absorption SEE Experiment
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Three-Dimensional Mapping of SEE Sensitivity 
(LM124 Q20: General Characteristics)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)
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Low Power Measurements
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(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: Low Power
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: Low Power
(Inverting Configuration; gain of 20)
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“Z” Dependence: LM124 Q20 TPA: Low Power
(Inverting Configuration; gain of 20)
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LM124 Q20 TPA SET: “Z” Dependence

“C1” Transient

“C2” Transient

C1-Sub
“Shunt”
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Backside “Through-Wafer” TPA Illumination

Surface elements opaque 
to optical excitation

Tightly focused two-
photon excitation 

source

Substrate transparent 
to single photon 

sub-bandgap excitationCircuit Layer(s)

Region of 2 Photon
Carrier Generation



Defense Threat Reduction 
Agency

���������
	 
 ���

���������	
���������������
��

� �  � �� ��� � � � 

� � �� 




Defense Threat Reduction 
Agency

Schematic Flip Chip Cross Section
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Backside “Through-Wafer” TPA Illumination
LM124 Operational Amplifier
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Backside “Through-Wafer” TPA Illumination
LM124 Operational Amplifier
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Backside “Through-Wafer” TPA Illumination
LM124 Operational Amplifier
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Backside “Through-Wafer” TPA Illumination
SEU in Flip Chip SRAM

• Issues
• through-wafer imaging

• InGaAs FPA 
• highly-doped substrate

• linear loss from free-carrier absorption
• attenuates IR beam 
• attenuates illumination light
• wafer thinned to minimize absorption

• Results: SEUs successfully injected in SRAM by 
TPA at well characterized locations



Defense Threat Reduction 
Agency

Backside “Through-Wafer” TPA Illumination
SEU in Flip Chip SRAM Test Structure

2D SEU Map
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Nonlinear Optical Measurements: Z-scans

lens
f.l.= zo sample beam splitter

aperture

detector 2

detector 1

sample translation
wrt lens focal plane, zo

fs laser pulse
@ 1/2 Eg

pulse energy
monitor

Ultrashort laser pulse induces
nonlinear lensing in sample:

( )  ),( , 2 zrIntrn =∆
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Open Aperture Z-Scan Measurement of TPA
Antimony-Doped Silicon (0.02 Ω-cm)
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Antimony-Doped Silicon (0.02 Ω-cm)


